
Observability with 
OpenTelemetry

2024.02
v1



2

Observability



Pillars Of 
Observability

TEMPLE (from Yuri 
Shkuro)

● Metrics (the original pillar): Golden 
signals with RED (Endpoints and 
Services) and USE (Applications & 
Resources)

● Logs (the ancient pillar): Application, 
Runtime and Traffic

● Traces (the “new cool kid on the 
block” pillar): Distributed Tracing in a 
Cloud Native world

● Events (the misunderstood pillar): 
events that are external to the 
observed system that cause some 
changes in that system

● Profiles (the geek pillar): specialize in 
performance and efficiency 
optimizations

● Exceptions (the forgotten pillar): a 
specialized form of structured logs



4

OpenTelemetry



5

● CNCF project, comes from OpenTracing, OpenCensus
● Collection of tools, APIs and SDK to instrument, generate, collect and exporter telemetry data
● Single vendor-agnostic library per programming language
● Specifications:

○ API
○ SDK
○ Data (Interface Data Language)

● OpenTelemetry status

https://docs.google.com/spreadsheets/d/1wEnJ9OD_M4J3guZOccIVy_8OOQCX-tsgZOefK0TQ5bY/edit#gid=976519966
https://opentelemetry.io/status/


6

● Vendor Neutrality: provides a unified set of APIs, SDKs, and instrumentation libraries that work 
across different programming languages and frameworks

● Standardization and Interoperability: aims to provide a common standard for observability 
instrumentation :
○ OpenTelemetry Specification (OTel, v1.30.0): it provides the APIs, SDKs, and data models 

that all other OTEL standards are derived from
○ OpenTelemetry Protocol (OTLP v1.1.0): describes a common wire protocol for delivering 

observability data
○ OpenTelemetry Semantic Conventions (1.24.0): define a common set of (semantic) attributes which 

provide meaning to data when collecting, producing and consuming it
● Extensibility and Customization: official binaries or build owns
● Xkcd #927

https://opentelemetry.io/docs/specs/otel/protocol/
https://opentelemetry.io/docs/specs/otlp/
https://opentelemetry.io/docs/specs/semconv/
https://xkcd.com/927/


7

● Specification: 
○ API: Defines data types and operations for generating and correlating tracing, metrics, and 

logging data.
○ SDK: Defines requirements for a language-specific implementation of the API. Data: Defines the 

OpenTelemetry Protocol (OTLP)
● Collector: a vendor-agnostic proxy that can receive, process, and export telemetry data
● SDKs: generate telemetry data with your language of choice and export that data to a preferred 

backend. 
● Instrumentation Libraries: supports a broad number of components that generate relevant telemetry 

data from popular libraries and frameworks for supported languages
● Automatic Instrumentation: provide a way to instrument your application without touching your source 

code
● K8S Operator: manages the OpenTelemetry Collector and auto-instrumentation of the workloads using 

OpenTelemetry



OpenTelemetry 
Components 

Lifecycle

● Draft components are under design, and 
have not been added to the specification.

● Experimental components are released 
and available for beta testing.

● Stable components are backwards 
compatible and covered under long term 
support.

● Deprecated components are stable but 
may eventually be removed.



OpenTelemetry 
Signals

● Traces: what happens when a request 
is made to an application

● Metrics: a measurement about a 
service, captured at runtime

● Logs: a timestamped text record, 
either structured (recommended) or 
unstructured, with metadata. 

● Baggage: Contextual informations 
that’s passed between spans

● Events: LogRecords and Events are 
both represented using the same data 
model.

● Profiles: 
https://github.com/open-telemetry/
oteps/pull/237

https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/logs/data-model.md
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/logs/data-model.md
https://github.com/open-telemetry/oteps/pull/237
https://github.com/open-telemetry/oteps/pull/237


OpenTelemetry 
Semantic

Conventions

Defined for the following areas:

● General: General Semantic Conventions.
● Cloud Providers: Semantic Conventions for cloud 

providers libraries.
● CloudEvents: Semantic Conventions for the 

CloudEvents specification.
● Database: Semantic Conventions for database 

operations.
● Exceptions: Semantic Conventions for exceptions.
● FaaS: Semantic Conventions for Function as a Service 

(FaaS) operations.
● Feature Flags: Semantic Conventions for feature flag 

evaluations.
● HTTP: Semantic Conventions for HTTP client and 

server operations.
● Messaging: Semantic Conventions for messaging 

operations and systems.
● Object Stores: Semantic Conventions for object stores 

operations.
● RPC: Semantic Conventions for RPC client and server 

operations.
● System: System Semantic Conventions.

https://opentelemetry.io/docs/specs/semconv/general/
https://opentelemetry.io/docs/specs/semconv/cloud-providers/
https://opentelemetry.io/docs/specs/semconv/cloudevents/
https://opentelemetry.io/docs/specs/semconv/database/
https://opentelemetry.io/docs/specs/semconv/exceptions/
https://opentelemetry.io/docs/specs/semconv/faas/
https://opentelemetry.io/docs/specs/semconv/feature-flags/
https://opentelemetry.io/docs/specs/semconv/http/
https://opentelemetry.io/docs/specs/semconv/messaging/
https://opentelemetry.io/docs/specs/semconv/object-stores/
https://opentelemetry.io/docs/specs/semconv/rpc/
https://opentelemetry.io/docs/specs/semconv/system/


11

OpenTelemetry Collector
Vendor-agnostic way to receive, process and export telemetry data.

● Receiver: obtain the telemetry data (push or pull model)
● Processor: run on data between being received and being exported
● Exporter: get the telemetry data out of the collector (push or pull model)
● Pipelines: a chain of receiver, zero or more processors, and exporters
● Connectors: both an exporter and receiver (span to logs, spans to metrics, …)
● Extensions: available primarily for tasks that do not involve processing telemetry data 

(healthcheck, auth/z, …)



12

OpenTelemetry Distribution
● A collection of components (receivers, processors, …) 

assembled in a binary (the list)
● Official:

○ Core
○ Contrib

● From vendor:
○ AWS Distro for OpenTelemetry (ADOT)
○ Azure Monitor OpenTelemetry Distro
○ Grafana Agent
○ Splunk
○ Sumologic
○ …

● Custom Builder using the OpenTelemetry Collector Builder

https://github.com/open-telemetry/opentelemetry-collector-contrib/blob/main/distributions.yaml
https://opentelemetry.io/ecosystem/vendors/
https://aws-otel.github.io/
https://learn.microsoft.com/en-us/azure/azure-monitor/app/opentelemetry-overview
https://opentelemetry.io/docs/collector/custom-collector/


13

OpenTelemetry Collector Builder
● Install the builder
● Create a builder manifest file
● Use the OTel Registry to find components
● Generating the Code and Building your Collector’s 

distribution:

. /ocb --config builder-config.yaml

https://opentelemetry.io/ecosystem/registry/


14

Grafana Agent

Is a vendor-neutral, batteries-included telemetry collector with configuration inspired 
by Terraform.

● Every signal: Collect telemetry data for metrics, logs, traces, and continuous 

profiles.

● Deployments: Static, Operator or Flow

● Write programmable pipelines with ease, and debug them using a built-in UI.

https://terraform.io/
https://grafana.com/docs/agent/latest/flow/monitoring/debugging/#grafana-agent-flow-ui


15



Questions


